When is a Periodic Function the Curvature of a Closed Plane Curve?

From an article of J. Arroyo, O. J. Garay and J. J. Mencia

May 2012

-0

May 2012 1/12

2 The criterion

3 Analytical proof

Geometrical proof

5 Consequences

6 Examples

When does γ_k close up?

Problem :

Given a periodic function $k : \mathbb{R} \to \mathbb{R}$, when does the associate unit planar curve $\gamma_k : \mathbb{R} \to \mathbb{R}^2$ close up?

When does γ_k close up?

Problem :

Given a periodic function $k : \mathbb{R} \to \mathbb{R}$, when does the associate unit planar curve $\gamma_k : \mathbb{R} \to \mathbb{R}^2$ close up?

The case of $\rho_k \neq \rho$.

What happens to the curvature of a closed curve?

Suppose $n\rho_k = L \in \mathbb{N}$.

What happens to the curvature of a closed curve?

Suppose $n\rho_k = L \in \mathbb{N}$.

$$\frac{1}{2\pi}\int_0^L k(s)\mathrm{d}s = i(\gamma) = m \in \mathbb{Z}.$$

What happens to the curvature of a closed curve?

Suppose $n\rho_k = L \in \mathbb{N}$.

$$\frac{1}{2\pi}\int_0^L k(s)\mathrm{d}s = i(\gamma) = m \in \mathbb{Z}.$$

Then we deduce

Characterization

$$\frac{1}{2\pi}\int_0^{\rho_k}k(s)\mathrm{d}s=\frac{m}{n}\in\mathbb{Q}-\mathbb{Z}.$$

Closedness criterion

The criterion

Let $k : \mathbb{R} \to \mathbb{R}$ be a smooth periodic function of minimum period ρ_k , and $\gamma_k(s)$ the associate curve, arc-length parametrised. Then $\gamma_k(s)$ close up in $[0, n\rho_k]$, with n > 1, iff there exists $m \in \mathbb{Z}$ such that

$$\frac{1}{2\pi}\int_0^{\rho_k}k(s)\mathrm{d}s=\frac{m}{n}\in\mathbb{Q}-\mathbb{Z}.$$

The associate curve

Suppose k(s) agrees with the hypothesis.

The associate curve

Suppose k(s) agrees with the hypothesis. Suppose also $\gamma(0) = (0,0)$ and $\gamma'(0) = (1,0)$.

The associate curve

Suppose k(s) agrees with the hypothesis. Suppose also $\gamma(0) = (0,0)$ and $\gamma'(0) = (1,0)$. Then

The curve

$$\gamma(s) = \int_0^s \exp\left(i\int_0^u k(t)dt\right)du.$$

Suppose k(s) agrees with the hypothesis. Suppose also $\gamma(0) = (0,0)$ and $\gamma'(0) = (1,0)$. Then

The curve

$$\gamma(s) = \int_0^s \exp\left(i\int_0^u k(t)dt\right)du.$$

Let us write $\theta(s) = \int_0^s k(t) dt$.

We would like to show

$$\forall s, \int_s^{s+\rho} \exp(i\theta(u)) \mathrm{d}u = 0.$$

イロト イロト イヨト イヨト

We would like to show

$$orall s, \int_s^{s+
ho} \exp(i heta(u)) \mathrm{d} u = 0.$$

Then, by computing ($j \in 0, \ldots, n-1$)

$$\int_{s+j\rho_k}^{s+(j+1)\rho_k} exp(i\theta(u)) \mathrm{d}u = \cdots = \int_s^{s+\rho_k} exp(i\theta(u) + 2\pi i \frac{m}{n}j) \mathrm{d}u$$

< E> E のQC May 2012 7/12

イロト イヨト イヨト イヨ

- ()

We would like to show

$$\forall s, \int_{s}^{s+
ho} \exp(i\theta(u)) \mathrm{d}u = 0.$$

Then, by computing ($j \in 0, \ldots, n-1$)

$$\int_{s+j\rho_k}^{s+(j+1)\rho_k} exp(i\theta(u)) \mathrm{d} u = \cdots = \int_s^{s+\rho_k} exp(i\theta(u) + 2\pi i \frac{m}{n}j) \mathrm{d} u$$

we get

$$\int_{s}^{s+\rho} \exp(i\theta(u)) \mathrm{d}u = \left\{ \sum_{j=0}^{n-1} \exp(2\pi i \frac{m}{n}j) \right\} \int_{s}^{s+\rho_{k}} \exp(i\theta(u)) \mathrm{d}u$$

イロト イポト イヨト イヨト

We would like to show

$$\forall s, \int_{s}^{s+\rho} \exp(i\theta(u)) \mathrm{d}u = 0.$$

Then, by computing ($j \in 0, \ldots, n-1$)

$$\int_{s+j\rho_k}^{s+(j+1)\rho_k} \exp(i\theta(u)) \mathrm{d}u = \cdots = \int_s^{s+\rho_k} \exp(i\theta(u) + 2\pi i \frac{m}{n}j) \mathrm{d}u$$

we get

$$\int_{s}^{s+\rho} \exp(i\theta(u)) \mathrm{d}u = \left\{ \sum_{j=0}^{n-1} \exp(2\pi i \frac{m}{n}j) \right\} \int_{s}^{s+\rho_{k}} \exp(i\theta(u)) \mathrm{d}u$$

If gcd(m, n) = 1, then it's 0.

Let be $\beta_j(s) = \gamma(s+j\rho_k)$.

May 2012 8/12

ъ

▶ ▲ 臣 ▶ ▲

Let be $\beta_j(s) = \gamma(s+j\rho_k)$. Then we have $\beta_j(s) := M_i(\beta_1(s)) = M_i(\gamma(s))$.

Let be $\beta_j(s) = \gamma(s + j\rho_k)$. Then we have $\beta_j(s) := M_i(\beta_1(s)) = M_i(\gamma(s))$. But we have $\beta_2(s) = A_{\theta_2}\gamma(s) + b_2$ with $b_2 = \gamma(\rho_k)$ and $\theta_2 = \theta(\rho_k)$.

-0

Let be $\beta_j(s) = \gamma(s+j\rho_k)$. Then we have $\beta_j(s) := M_i(\beta_1(s)) = M_i(\gamma(s))$. But we have $\beta_2(s) = A_{\theta_2}\gamma(s) + b_2$ with $b_2 = \gamma(\rho_k)$ and $\theta_2 = \theta(\rho_k)$. M_2 is a rotation of angle θ about a point p.

- ()

Glue the pieces

 M_2 sends smoothly $\beta_1(\rho) = \beta_2(0)$ to $\beta_2(\rho) = \beta_3(0).$

- 0

Glue the pieces

 M_2 sends smoothly $\beta_1(\rho) = \beta_2(0)$ to $\beta_2(\rho) = \beta_3(0)$. We deduce that $\beta_3 = M_3(\gamma) = M_2(\beta_2) = M_2 \circ M_2(\gamma)$.

- ()

Glue the pieces

 M_2 sends smoothly $\beta_1(\rho) = \beta_2(0)$ to $\beta_2(\rho) = \beta_3(0)$. We deduce that $\beta_3 = M_3(\gamma) = M_2(\beta_2) = M_2 \circ M_2(\gamma)$. By induction, M_{k+1} is a rotation of angle $k\theta(\rho)$, so the curve closes up in $[0, n\rho_k]$.

Closing by adding or scaling

For every $\frac{m}{n} \in \mathbb{Q} - \mathbb{Z}$, gcd(m, n) = 1 there exist constants a_n^m and b_n^m such that

The plane curve with curvature $k(s) + b_n^m$ closes up after n periods of its curvature with rotation index m.

- ()

Closing by adding or scaling

For every $\frac{m}{n} \in \mathbb{Q} - \mathbb{Z}$, gcd(m, n) = 1 there exist constants a_n^m and b_n^m such that

The plane curve with curvature $k(s) + b_n^m$ closes up after n periods of its curvature with rotation index m.

If $\theta(\rho_k)! = 0$, The plane curve with curvature $a_n^m k(s)$ close up after n periods of it's curvature with rotation index m.

Examples

Respectively $k(s) = \frac{1}{3} + sin(s)$ and $k(s) = \frac{1}{10} + sin(s)$.

< ≣ >

Conclusion : Remaining questions

The other cases

What happens when the period of the curve and curvature are the same?