When is a Periodic Function the Curvature of a Closed Plane Curve?

From an article of J. Arroyo, O. J. Garay and J. J. Mencia

May 2012

(1) Analysis of the problem
(2) The criterion
(3) Analytical proof

4 Geometrical proof
(5) Consequences
(6) Examples
(7) Conclusion

When does γ_{k} close up?

Problem :

Given a periodic function $k: \mathbb{R} \rightarrow \mathbb{R}$, when does the associate unit planar curve $\gamma_{k}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ close up?

When does γ_{k} close up?

Problem :

Given a periodic function $k: \mathbb{R} \rightarrow \mathbb{R}$, when does the associate unit planar curve $\gamma_{k}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ close up?

The case of $\rho_{k} \neq \rho$.

What happens to the curvature of a closed curve?

Suppose $n \rho_{k}=L \in \mathbb{N}$.

What happens to the curvature of a closed curve?

Suppose $n \rho_{k}=L \in \mathbb{N}$.

$$
\frac{1}{2 \pi} \int_{0}^{L} k(s) \mathrm{d} s=i(\gamma)=m \in \mathbb{Z}
$$

What happens to the curvature of a closed curve?

Suppose $n \rho_{k}=L \in \mathbb{N}$.

$$
\frac{1}{2 \pi} \int_{0}^{L} k(s) \mathrm{d} s=i(\gamma)=m \in \mathbb{Z}
$$

Then we deduce

Characterization

$$
\frac{1}{2 \pi} \int_{0}^{\rho_{k}} k(s) \mathrm{d} s=\frac{m}{n} \in \mathbb{Q}-\mathbb{Z}
$$

Closedness criterion

The criterion

Let $\mathrm{k}: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth periodic function of minimum period ρ_{k}, and $\gamma_{k}(s)$ the associate curve, arc-length parametrised. Then $\gamma_{k}(s)$ close up in $\left[0, n \rho_{k}\right]$, with $n>1$, iff there exists $m \in \mathbb{Z}$ such that

$$
\frac{1}{2 \pi} \int_{0}^{\rho_{k}} k(s) \mathrm{d} s=\frac{m}{n} \in \mathbb{Q}-\mathbb{Z}
$$

The associate curve

Suppose $k(s)$ agrees with the hypothesis.

The associate curve

Suppose $k(s)$ agrees with the hypothesis. Suppose also $\gamma(0)=(0,0)$ and $\gamma^{\prime}(0)=(1,0)$.

The associate curve

Suppose $k(s)$ agrees with the hypothesis. Suppose also $\gamma(0)=(0,0)$ and $\gamma^{\prime}(0)=(1,0)$. Then

The curve

$$
\gamma(s)=\int_{0}^{s} \exp \left(i \int_{0}^{u} k(t) \mathrm{d} t\right) \mathrm{d} u
$$

The associate curve

Suppose $k(s)$ agrees with the hypothesis. Suppose also $\gamma(0)=(0,0)$ and $\gamma^{\prime}(0)=(1,0)$. Then

The curve

$$
\gamma(s)=\int_{0}^{s} \exp \left(i \int_{0}^{u} k(t) \mathrm{d} t\right) \mathrm{d} u
$$

Let us write $\theta(s)=\int_{0}^{s} k(t) \mathrm{d} t$.

Analytical proof

We would like to show

$$
\forall s, \int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=0
$$

Analytical proof

We would like to show

$$
\forall s, \int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=0
$$

Then, by computing $(j \in 0, \ldots, n-1)$

$$
\int_{s+j \rho_{k}}^{s+(j+1) \rho_{k}} \exp (i \theta(u)) \mathrm{d} u=\cdots=\int_{s}^{s+\rho_{k}} \exp \left(i \theta(u)+2 \pi i \frac{m}{n} j\right) \mathrm{d} u
$$

Analytical proof

We would like to show

$$
\forall s, \int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=0
$$

Then, by computing $(j \in 0, \ldots, n-1)$

$$
\int_{s+j \rho_{k}}^{s+(j+1) \rho_{k}} \exp (i \theta(u)) \mathrm{d} u=\cdots=\int_{s}^{s+\rho_{k}} \exp \left(i \theta(u)+2 \pi i \frac{m}{n} j\right) \mathrm{d} u
$$

we get

$$
\int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=\left\{\sum_{j=0}^{n-1} \exp \left(2 \pi i \frac{m}{n} j\right)\right\} \int_{s}^{s+\rho_{k}} \exp (i \theta(u)) \mathrm{d} u
$$

Analytical proof

We would like to show

$$
\forall s, \int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=0
$$

Then, by computing $(j \in 0, \ldots, n-1)$

$$
\int_{s+j \rho_{k}}^{s+(j+1) \rho_{k}} \exp (i \theta(u)) \mathrm{d} u=\cdots=\int_{s}^{s+\rho_{k}} \exp \left(i \theta(u)+2 \pi i \frac{m}{n} j\right) \mathrm{d} u
$$

we get

$$
\int_{s}^{s+\rho} \exp (i \theta(u)) \mathrm{d} u=\left\{\sum_{j=0}^{n-1} \exp \left(2 \pi i \frac{m}{n} j\right)\right\} \int_{s}^{s+\rho_{k}} \exp (i \theta(u)) \mathrm{d} u
$$

If $\operatorname{gcd}(m, n)=1$, then it's 0 .

Cut the curve

Let be $\beta_{j}(s)=\gamma\left(s+j \rho_{k}\right)$.

Cut the curve

Let be $\beta_{j}(s)=\gamma\left(s+j \rho_{k}\right)$.
Then we have $\beta_{j}(s):=M_{i}\left(\beta_{1}(s)\right)=M_{i}(\gamma(s))$.

Cut the curve

Let be $\beta_{j}(s)=\gamma\left(s+j \rho_{k}\right)$.
Then we have $\beta_{j}(s):=M_{i}\left(\beta_{1}(s)\right)=M_{i}(\gamma(s))$.
But we have $\beta_{2}(s)=A_{\theta_{2}} y(s)+b_{2}$ with $b_{2}=\gamma\left(\rho_{k}\right)$ and $\theta_{2}=\theta\left(\rho_{k}\right)$.

Cut the curve

Let be $\beta_{j}(s)=\gamma\left(s+j \rho_{k}\right)$.
Then we have $\beta_{j}(s):=M_{i}\left(\beta_{1}(s)\right)=M_{i}(\gamma(s))$.
But we have $\beta_{2}(s)=A_{\theta_{2}} y(s)+b_{2}$ with $b_{2}=\gamma\left(\rho_{k}\right)$ and $\theta_{2}=\theta\left(\rho_{k}\right)$. M_{2} is a rotation of angle θ about a point p.

Glue the pieces

M_{2} sends smoothly $\beta_{1}(\rho)=\beta_{2}(0)$ to $\beta_{2}(\rho)=\beta_{3}(0)$.

Glue the pieces

M_{2} sends smoothly $\beta_{1}(\rho)=\beta_{2}(0)$ to $\beta_{2}(\rho)=\beta_{3}(0)$. We deduce that $\beta_{3}=M_{3}(\gamma)=M_{2}\left(\beta_{2}\right)=M_{2} \circ M_{2}(\gamma)$.

Glue the pieces

M_{2} sends smoothly $\beta_{1}(\rho)=\beta_{2}(0)$ to $\beta_{2}(\rho)=\beta_{3}(0)$.
We deduce that $\beta_{3}=M_{3}(\gamma)=M_{2}\left(\beta_{2}\right)=M_{2} \circ M_{2}(\gamma)$.
By induction, M_{k+1} is a rotation of angle $k \theta(\rho)$, so the curve closes up in $\left[0, n \rho_{k}\right]$.

Closing by adding or scaling

For every $\frac{m}{n} \in \mathbb{Q}-\mathbb{Z}, \operatorname{gcd}(m, n)=1$ there exist constants a_{n}^{m} and b_{n}^{m} such that
The plane curve with curvature $k(s)+b_{n}^{m}$ closes up after n periods of its curvature with rotation index m .

Closing by adding or scaling

For every $\frac{m}{n} \in \mathbb{Q}-\mathbb{Z}, \operatorname{gcd}(m, n)=1$ there exist constants a_{n}^{m} and b_{n}^{m} such that
The plane curve with curvature $k(s)+b_{n}^{m}$ closes up after n periods of its curvature with rotation index m .

If $\theta\left(\rho_{k}\right)!=0$, The plane curve with curvature $a_{n}^{m} k(s)$ close up after n periods of it's curvature with rotation index m .

Examples

Respectively $k(s)=\frac{1}{3}+\sin (s)$ and $k(s)=\frac{1}{10}+\sin (s)$.

Conclusion : Remaining questions

The other cases What happens when the period of the curve and curvature are the same?

